Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Pediatr Emerg Care ; 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20245079

ABSTRACT

OBJECTIVE: The aim was to describe the characteristics of the transport system of critically ill pediatric patients in the emergency departments (EDs) in Latin America (LA). METHODOLOGY: This is a prospective cross-sectional study in a 1-year period. Patients were recruited on days 1, 7, 14, 21, and 28 of each month in the EDs in LA. We included ill-pediatric patients aged 1 month to 18 years. Patients who needed transfer for a diagnostic study, with arrival mode not by ambulance, or with the impossibility of interviewing the transfer team were excluded from the study. RESULTS: A total of 389 patients were included in the study. The majority were males (57%) with a median age of 49 months (interquartile range, 10-116). Thirty-three percent (129) of transfers had the participation of a coordinating center; 97.1% (375) were carried out by road ambulance, and 84.3% (323) were interhospital transfers, with a mean distance traveled of 83.2 km (SD, 105 km). The main reason for transfer in 88.17% (343) was the need for a more complex health center. The main diagnosis was respiratory distress (71; 18.2%), acute abdomen (70; 18%), Traumatic Brain Injury (33; 8.48%), multiple trauma (32; 8.23%), septic shock (31; 7.9%), and COVID-19-related illness (19; 4.8%). A total of 296 (76.5%) patients had peripheral vascular access, and 171 (44%) patients had oxygen support with 49 (28.6%) having invasive ventilation; the most frequent monitoring method (67.8%) was pulse oximetry, and 83.4% (313) did not record adverse events. Regarding the transfer team, 88% (342) had no specialized personnel, and only 62.4% (243) had a physician on their teams. CONCLUSIONS: In LA, there is great variability in personnel training, equipment for pediatric transport, team composition, and characterization of critical care transport systems. Continued efforts to improve conditions in our countries may help reduce patient morbidity and mortality.

2.
Heliyon ; 9(6): e16130, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2318571

ABSTRACT

Based Epidemiology (WBE) consists of quantifying biomarkers in sewerage systems to derive real-time information on the health and/or lifestyle of the contributing population. WBE usefulness was vastly demonstrated in the context of the COVID-19 pandemic. Many methods for SARS-CoV-2 RNA determination in wastewater were devised, which vary in cost, infrastructure requirements and sensitivity. For most developing countries, implementing WBE for viral outbreaks, such as that of SARS-CoV-2, proved challenging due to budget, reagent availability and infrastructure constraints. In this study, we assessed low-cost methods for SARS-CoV-2 RNA quantification by RT-qPCR, and performed variant identification by NGS in wastewater samples. Results showed that the effect of adjusting pH to 4 and/or adding MgCl2 (25 mM) was negligible when using the adsorption-elution method, as well as basal physicochemical parameters in the sample. In addition, results supported the standardized use of linear rather than plasmid DNA for a more accurate viral RT-qPCR estimation. The modified TRIzol-based purification method in this study yielded comparable RT-qPCR estimation to a column-based approach, but provided better NGS results, suggesting that column-based purification for viral analysis should be revised. Overall, this work provides evaluation of a robust, sensitive and cost-effective method for SARS-CoV-2 RNA analysis that could be implemented for other viruses, for a wider WEB adoption.

3.
Sci Total Environ ; : 160498, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2240122

ABSTRACT

The COVID-19 pandemic has caused a global health crisis, and wastewater-based epidemiology (WBE) has emerged as an important tool to assist public health decision-making. Recent studies have shown that the SARS-CoV-2 RNA concentration in wastewater samples is a reliable indicator of the severity of the pandemic for large populations. However, few studies have established a strong correlation between the number of infected people and the viral concentration in wastewater due to variations in viral shedding over time, viral decay, infiltration, and inflow. Herein we present the relationship between the number of COVID-19-positive patients and the viral concentration in wastewater samples from three different hospitals (A, B, and C) in the city of Belo Horizonte, Minas Gerais, Brazil. A positive and strong correlation between wastewater SARS-CoV-2 concentration and the number of confirmed cases was observed for Hospital B for both regions of the N gene (R = 0.89 and 0.77 for N1 and N2, respectively), while samples from Hospitals A and C showed low and moderate correlations, respectively. Even though the effects of viral decay and infiltration were minimized in our study, the variability of viral shedding throughout the infection period and feces dilution due to water usage for different activities in the hospitals could have affected the viral concentrations. These effects were prominent in Hospital A, which had the smallest sewershed population size, and where no correlation between the number of defecations from COVID-19 patients and viral concentration in wastewater was observed. Although we could not determine trends in the number of infected patients through SARS-CoV-2 concentrations in hospitals' wastewater samples, our results suggest that wastewater monitoring can be efficient for the detection of infected individuals at a local level, complementing clinical data.

4.
Sci Total Environ ; 838(Pt 1): 155959, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-1852048

ABSTRACT

Coronavirus pandemic started in March 2020 and since then has caused millions of deaths worldwide. Wastewater-based epidemiology (WBE) can be used as an epidemiological surveillance tool to track SARS-CoV-2 dissemination and provide warning of COVID-19 outbreaks. Considering that there are public places that could be potential hotspots of infected people that may reflect the local epidemiological situation, the presence of SARS-CoV-2 RNA was analyzed by RT-qPCR for approximately 16 months in sewage samples from five public places located in the metropolitan area of Belo Horizonte, MG, Brazil: the sewage treatment plant of Confins International Airport (AIR), the main interstate bus terminal (BUS), an upscale shopping centre (SHC1), a popular shopping centre (SHC2) and a university institute (UNI). The results were compared to those of the influent sewage of the two main sewage treatment plants of Belo Horizonte (STP1 and STP2). Viral monitoring in the STPs proved to be an useful regional surveillance tool, reflecting the trends of COVID-19 cases. However, the viral concentrations in the samples from the selected public places were generally much lower than those of the municipal STPs, which may be due to the behaviour of the non-infected or asymptomatic people, who are likely to visit these places relatively more than the symptomatic infected ones. Among these places, the AIR samples presented the highest viral concentrations and concentration peaks were observed previously to local outbreaks. Therefore, airport sewage monitoring can provide an indication of the regional epidemiological situation. For the other places, particularly the UNI, the results suggested a greater potential to detect the infection and trace cases especially among employees and regular attendees. Taken together, the results indicate that for a regular and permanent sentinel sewage surveillance the sewage from STPs, AIR and UNI could be monitored.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Sewage , Wastewater
5.
Water Res ; 202: 117388, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1284609

ABSTRACT

Brazil has become one of the epicentres of the COVID-19 pandemic, with cases heavily concentrated in large cities. Testing data is extremely limited and unreliable, which restricts health authorities' ability to deal with the pandemic. Given the stark demographic, social and economic heterogeneities within Brazilian cities, it is important to identify hotspots so that the limited resources available can have the greatest impact. This study shows that decentralised monitoring of SARS-CoV-2 RNA in sewage can be used to assess the distribution of COVID-19 prevalence in the city. The methodology developed in this study allowed the identification of hotspots by comprehensively monitoring sewers distributed through Belo Horizonte, Brazil's third largest city. Our results show that the most vulnerable neighbourhoods in the city were the hardest hit by the pandemic, indicating that, for many Brazilians, the situation is much worse than reported by official figures.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2/isolation & purification , Sewage/virology , Brazil/epidemiology , COVID-19/epidemiology , Humans , Prevalence , RNA, Viral
6.
Water Res ; 195: 117002, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1117788

ABSTRACT

COVID-19 patients can excrete viable SARS-CoV-2 virus via urine and faeces, which has raised concerns over the possibility of COVID-19 transmission via aerosolized contaminated water or via the faecal-oral route. These concerns are especially exacerbated in many low- and middle-income countries, where untreated sewage is frequently discharged to surface waters. SARS-CoV-2 RNA has been detected in river water (RW) and raw wastewater (WW) samples. However, little is known about SARS-CoV-2 viability in these environmental matrices. Determining the persistence of SARS-CoV-2 in water under different environmental conditions is of great importance for basic assumptions in quantitative microbial risk assessment (QMRA). In this study, the persistence of SARS-CoV-2 was assessed using plaque assays following spiking of RW and WW samples with infectious SARS-CoV-2 that was previously isolated from a COVID-19 patient. These assays were carried out on autoclaved RW and WW samples, filtered (0.22 µm) and unfiltered, at 4 °C and 24 °C. Linear and nonlinear regression models were adjusted to the data. The Weibull regression model achieved the lowest root mean square error (RMSE) and was hence chosen to estimate T90 and T99 (time required for 1 log and 2 log reductions, respectively). SARS-CoV-2 remained viable longer in filtered compared with unfiltered samples. RW and WW showed T90 values of 1.9 and 1.2 day and T99 values of 6.4 and 4.0 days, respectively. When samples were filtered through 0.22 µm pore size membranes, T90 values increased to 3.3 and 1.5 days, and T99 increased to 8.5 and 4.5 days, for RW and WW samples, respectively. Remarkable increases in SARS-CoV-2 persistence were observed in assays at 4 °C, which showed T90 values of 7.7 and 5.5 days, and T99 values of 18.7 and 17.5 days for RW and WW, respectively. These results highlight the variability of SARS-CoV-2 persistence in water and wastewater matrices and can be highly relevant to efforts aimed at quantifying water-related risks, which could be valuable for understanding and controlling the pandemic.


Subject(s)
COVID-19 , Wastewater , Humans , RNA, Viral , Rivers , SARS-CoV-2 , Temperature , Water
7.
Sci Total Environ ; 760: 144309, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-968050

ABSTRACT

Human enteric pathogens are a major global concern, as they are responsible for thousands of preventable deaths every year. New pathogens in wastewater are constantly emerging. For example, SARS-CoV-2 has been recently detected in domestic sewage and primary sludge. Knowledge about the reduction of viruses in wastewater treatment and their partitioning between the treated liquid effluent versus the sludge or biosolids is still very scarce, especially in countries with emerging economies and tropical climates. Upflow anaerobic sludge blanket (UASB) reactors are among the top three most commonly used technologies for the treatment of sewage in Latin America and the Caribbean, and their use has become increasingly common in many other low- and middle-income countries. High-rate algal ponds (HRAP) are regarded as a sustainable technology for the post-treatment of UASB effluent. This study evaluated the overall reduction and the liquid-solid partitioning of somatic coliphages, F-specific coliphages, and E. coli in a pilot-scale system comprised of a UASB reactor followed by HRAPs treating real wastewater. Average log removal for somatic and F-specific coliphages were 0.40 and 0.56 for the UASB reactor, and 1.15 and 1.70 for HRAPs, respectively. The overall removal of both phages in the system was 2.06-log. Removal of E. coli was consistently higher. The number of viruses leaving the system in the UASB solids and algal biomass was less than 10% of the number leaving in the clarified liquid effluent. The number of E. coli leaving the system in solids residuals was estimated to be approximately one order of magnitude higher than the number of E. coli leaving in the liquid effluent. Results from this study demonstrate the suitability of UASB-HRAP systems to reduce viral and bacterial indicators from domestic sewage and the importance of adequately treating sludge for pathogen reduction before they are used as biosolids.


Subject(s)
COVID-19 , Sewage , Anaerobiosis , Bioreactors , Caribbean Region , Escherichia coli , Humans , Ponds , SARS-CoV-2 , Waste Disposal, Fluid
8.
Sci Total Environ ; 729: 138919, 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-116678

ABSTRACT

Detection of the SARS-CoV-2 virus in stools and sewage has recently been reported, raising the hypothesis of faecal-oral transmission. If confirmed, this could have far-reaching consequences for public health and for pandemic control strategies. In this paper, we argue that a comprehensive and more nuanced analysis is required to test this hypothesis, taking into consideration both environmental dynamics and the persistence of viral infectivity. First, we examine the evidence regarding the presence of the virus in stools and sewage. Then we discuss the current framework of disease transmission through water and excreta and how the transmission of a respiratory disease fits into it. Against this background, we propose a framework to test the faecal-oral hypothesis, unpacking the different environmental routes from faeces to the mouth of a susceptible person. This framework should not be seen as a confirmation of the hypothesis but rather as an expanded view of its complexities, which could help shaping an agenda for research into a number of unanswered questions. Finally, the paper briefly discusses practical implications, based on current knowledge, for containment of the pandemic.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Feces , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL